Geometric random inner products: A family of tests for random number generators

Shu-Ju Tu* and Ephraim Fischbach ${ }^{\dagger}$
Department of Physics, Purdue University, West Lafayette, Indiana 47907-1396
(Received 4 October 2002; published 28 January 2003)

Abstract

We present a computational scheme, GRIP (geometric random inner products), for testing the quality of random number generators. The GRIP formalism utilizes geometric probability techniques to calculate the average scalar products of random vectors distributed in geometric objects, such as circles and spheres. We show that these average scalar products define a family of geometric constants which can be used to evaluate the quality of random number generators. We explicitly apply the GRIP tests to several random number generators frequently used in Monte Carlo simulations, and demonstrate a statistical property for good random number generators.

DOI: 10.1103/PhysRevE.67.016113
PACS number(s): $02.50 . \mathrm{Ng}$

I. INTRODUCTION

Monte Carlo methods are among the most widely used numerical algorithms in computational science and engineering [1]. The key element in a Monte Carlo calculation is the generation of random numbers. Although a truly random number sequence produced by either a physical process such as nuclear decay, an electronic device etc., or by a computer algorithm, may not actually exist, a new and computationally easy-to-implement scheme to investigate random number generators is always highly desirable.

There have been many proposed schemes for the quality measure of random number generators [2-12]. These computational tests are based either on probability theory and statistical methods (for example, the χ^{2} test, the SmirnovKolmogorov test, the correlation test, the spectral test, and the DieHard battery of randomness tests), or on mathematical modeling and simulation for physical systems (for example: random walks and Ising model simulations). These methods also open the door to studying the properties of random number sequences such as randomness and complexity [13]. Some important attempts at an operational definition of randomness were previously developed by Kolmogorov and Chaitin (algorithmic informational theory) [14-17] and by Pincus (approximate entropy) [18].

In this paper, we study a method to measure n-dimensional randomness which we denote by GRIP (geometric random inner products). One of our main purposes in formulating the GRIP tests is to allow the characterization of geometric correlations which may cause unexpected errors in Monte Carlo simulations. The GRIP family of tests is based on the observation that the average scalar products of random vectors produced in geometric objects (e.g., circles and spheres), define geometric constants which can be used to evaluate the quality of random number generators. After presenting an example of a GRIP test, we exhibit a computational method for implementing GRIP, which is then used to analyze a number of random number generators. We then discuss the GRIP formalism in detail and show how a ran-

[^0]dom number sequence, when converted to random points in a space defined by a geometric object, can produce a series of known geometric constants. Later we introduce additional members within the GRIP family. We then present results for configurations of four, six, and eight random points in an n ball. Finally, we conclude by discussing how the GRIP test quantifies random number generators by explicitly adding a new geometric property of truly random number sequences along with other known properties studied by previously proposed schemes [2-13].

II. GENERAL DESCRIPTION OF THE GRIP FORMALISM

The GRIP scheme is derived from the theory of random distance distribution for spherical objects, and can be generalized to other geometric objects with arbitrary densities $[19,20]$. First, three random points $\left(\vec{r}_{1}, \vec{r}_{2}\right.$, and $\left.\vec{r}_{3}\right)$ are independently produced from the sample space defined by a geometric object. We then evaluate the average inner product $\left\langle\vec{r}_{12} \cdot \vec{r}_{23}\right\rangle$ constructed from two associated random vectors, $\vec{r}_{12}=\vec{r}_{2}-\vec{r}_{1}$ and $\vec{r}_{23}=\vec{r}_{3}-\vec{r}_{2}$. For a geometric object such as an n-ball of uniform density with a radius R, the analytical result is a geometric constant which can be expressed in terms of the dimensionality n of the space [19,20]:

$$
\begin{equation*}
\left\langle\vec{r}_{12} \cdot \vec{r}_{23}\right\rangle_{n}=-\frac{n}{n+2} R^{2} \tag{1}
\end{equation*}
$$

A simple derivation of Eq. (1) can be found in the Appendix.
The following procedures are the numerical implementation of our testing programs. A random number generator is used to produce a series of random points \vec{r}_{1}, \vec{r}_{2}, and $\vec{r}_{3}(n$ coordinates in the range of $-R$ and R for each point) such that these points are distributed in an n-dimensional spherical ball \mathbf{B} of radius R, where

$$
\begin{equation*}
\mathbf{B}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \leqslant R^{2}\right\} . \tag{2}
\end{equation*}
$$

Note that the points are accepted only if the condition (2) is satisfied, and rejected otherwise. We then compute a series of values for $\vec{r}_{12} \cdot \vec{r}_{23}$. If $\vec{r}_{12} \cdot \vec{r}_{23}$ is evaluated N times (Monte Carlo steps), then statistically we expect

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N}\left(\vec{r}_{12} \cdot \vec{r}_{23}\right)_{i}=-\frac{n}{n+2} R^{2} \tag{3}
\end{equation*}
$$

as predicted by Eq. (1).

III. RANDOM NUMBER GENERATORS

The following random number generators are used in the GRIP test.
(1) LCG1-a 32-bit (multiplicative) linear congruential generator [2,3] using

$$
\begin{equation*}
x_{n}=a \times x_{n-1}+c \bmod m \tag{4}
\end{equation*}
$$

where $a=16807, c=0$, and $m=2^{31}-1$.
(2) LCG2-a 48-bit (multiplicative) linear congruential generator [21] with $a=68909602460261, c=0$, and m $=2^{48}$.
(3) LCG3-a 48-bit (multiplicative) linear congruential generator [21] with $a=25214903917, c=11$, and $m=2^{48}$. We note that LCG3 and drand48, a standard library function in Unix systems, use the same algorithm.
(4) F55a-a lagged Fibonacci generator [2,3] using

$$
\begin{equation*}
x_{n}=\left(x_{n-p} \odot x_{n-q}\right) \bmod m, \tag{5}
\end{equation*}
$$

where $p=55, q=24, \odot=+$, and $m=2^{31}$.
(5) F55b-a lagged Fibonacci generator with $p=55, q$ $=24, \odot=-$, and $m=2^{31}$.
(6) F100-a lagged Fibonacci generator [2] with p $=100, q=37, \odot=-$, and $m=2^{30}$.
(7) F378-a lagged Fibonacci generator with $p=378, q$ $=107, \odot=+$, and $m=2^{31}$.
(8) F23209-a lagged Fibonacci generator with p $=23209, q=9739, \odot=+$, and $m=2^{31}$.
(9) R31-a generalized feedback shift register (GFSR) generator [2,8-12] using

$$
\begin{equation*}
x_{n}=x_{n-p} \oplus x_{n-q}, \tag{6}
\end{equation*}
$$

where $p=31, q=3$, and \oplus is the bitwise exclusive OR operator.
(10) R250-a GFSR generator with $p=250$ and $q=103$.
(11) R9689-a GFSR generator with $p=9689$ and q $=4187$.
(12) R44497-a GFSR generator with $p=44497$ and q $=21034$.
(13) R132049—a GFSR generator with $p=132049$ and $q=54454$.
(14) PENTA31—a four-tap shift-register-sequence random-number generator [9-12,22,23] using

$$
\begin{equation*}
x_{n}=x_{n-p} \oplus x_{n-q_{1}} \oplus x_{n-q_{2}} \oplus x_{n-q_{3}}, \tag{7}
\end{equation*}
$$

where $p=31, q_{1}=23, q_{2}=11, q_{3}=9$, and \oplus is the bitwise exclusive OR operator.
(15) PENTA89-a four-tap shift-register-sequence random-number generator with $p=89, q_{1}=69, q_{2}=40$, and $q_{3}=20$.
(16) Ziff31—a four-tap shift-register-sequence randomnumber generator with $p=31, q_{1}=13, q_{2}=8$, and $q_{3}=3$ [22,23].
(17) Ziff89—a four-tap shift-register-sequence randomnumber generator with $p=89, q_{1}=61, q_{2}=38$, and $q_{3}=33$.
(18) Ziff9689—a four-tap shift-register-sequence randomnumber generator with $p=9689, q_{1}=471, q_{2}=314$, and q_{3} $=157$.
(19) durxor-a generator selected from the IBM ESSL (Engineering and Scientific Subroutine Library) [24].
(20) durand-a generator selected from the IBM ESSL (Engineering and Scientific Subroutine Library) and the sequence period of durand is shorter than durxor [24].
(21) ran_gen-one of the subroutines in IMSL libraries from Visual Numeric [25].
(22) Random-a Fortran 90/95 standard intrinsic random number generator [26].
(23) Weyl—a Weyl sequence generator [27,28],

$$
\begin{equation*}
x_{n}=\{n \alpha\}, \tag{8}
\end{equation*}
$$

where $\{x\}$ is the fractional part of x, and α is an irrational number such as $\sqrt{2}$.
(24) NWS—a nested Weyl sequence generator [27,28],

$$
\begin{equation*}
x_{n}=\{n\{n \alpha\}\} \tag{9}
\end{equation*}
$$

(25) SNWS—a shuffled nested Weyl sequence generator [27,28],

$$
\begin{gather*}
s_{n}=M\{n\{n \alpha\}\}+\frac{1}{2}, \tag{10}\\
x_{n}=\left\{s_{n}\left\{s_{n} \alpha\right\}\right\}, \tag{11}
\end{gather*}
$$

where M is a large positive integer.

IV. OTHER MEMBERS OF THE GRIP FAMILY

For practical computational purposes, we may wish to transform a random number sequence from a uniform density distribution to one which is nonuniform. One of the most important nonuniform density distributions is the Gaussian (normal) distribution $P(r)$ with mean zero and standard deviation σ,

$$
\begin{equation*}
P_{n}(r)=\frac{1}{(2 \pi)^{n / 2} \sigma^{n}} e^{-(1 / 2)\left(r^{2} / \sigma^{2}\right)} \tag{12}
\end{equation*}
$$

Here $\int_{0}^{\infty} P_{n}(r) d r=1, r=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$, and n is the space dimensionality. One can use either the Box-Muller transformation method to generate a random number sequence with a Gaussian density distribution, or use available subroutines from major computational scientific libraries such as IBM ESSL and IMSL [24,25]. By applying the probability density function of the random distance distribution as discussed in Ref. [20], one can add a new GRIP member to investigate the quality of a Gaussian random number generator, and this new GRIP test can be expressed as

$$
\begin{equation*}
\left\langle\vec{r}_{12} \cdot \vec{r}_{23}\right\rangle_{n}=-n \sigma^{2} . \tag{13}
\end{equation*}
$$

TABLE I. Computed results for $\left\langle\vec{r}_{12} \cdot \vec{r}_{23}\right\rangle_{n}$, where "Expected" is the exact result obtained from Eq. (1). For each entry in the table, $N=10^{8}$ was used. The results have been rounded off to 10 significant digits. See text for additional details.

RNG	$n=3$	Error	Rating	$n=9$	Error	Rating
LCG1	-0.600 0234824	0.38574σ	\checkmark	-0.8181917210	0.21441σ	\checkmark
LCG2	-0.600 0637749	1.04753σ	\checkmark	-0.8181967418	0.32317σ	\checkmark
LCG3	-0.599 9657877	0.56203σ	\checkmark	-0.818154 8966	0.58295σ	\checkmark
F55a	-0.600 0264855	0.43511σ	\checkmark	-0.818 0015730	3.90347σ	
F55b	-0.599 9623855	0.61798σ	\checkmark	-0.818 3771530	4.22972σ	
F100	-0.599 9229686	1.26561σ	\checkmark	-0.8181448119	0.80136σ	\checkmark
F378	-0.600 0376168	0.61796σ	\checkmark	-0.8182413414	1.28886σ	\checkmark
F23209	-0.599 9508215	0.80803σ	\checkmark	-0.818182 1266	0.00668σ	\checkmark
R31	-0.600 0365146	0.59991σ	\checkmark	-0.8181388135	0.93172σ	\checkmark
R250	-0.599 9252804	1.22755σ	\checkmark	-0.8182028575	0.45560σ	\checkmark
R9689	-0.599 8896425	1.81311σ	\checkmark	-0.818139 2992	0.92077σ	\checkmark
R44497	-0.599 8295280	2.80110σ	\checkmark	-0.818203 0371	0.45949σ	\checkmark
R132049	-0.599 9710147	0.47621σ	\checkmark	-0.818204 4955	0.49106σ	\checkmark
PENTA31	-0.599 8720867	2.10175σ	\checkmark	-0.818162743 0	0.41304σ	\checkmark
PENTA89	-0.600 1304197	2.14242σ	\checkmark	-0.818 1720443	0.21164σ	\checkmark
Ziff31	-0.599 8499122	2.46602σ	\checkmark	-0.8183014410	2.59027σ	\checkmark
Ziff89	-0.599 9724977	0.45181σ	\checkmark	-0.818203 5466	0.47050σ	\checkmark
Ziff9689	-0.599 9323343	1.11162σ	\checkmark	-0.8181763959	0.11741σ	\checkmark
durxor	-0.599 9145062	1.40452σ	\checkmark	-0.8181196108	1.34706σ	\checkmark
durand	-0.599 9203642	1.30827σ	\checkmark	-0.8182185474	0.79528σ	\checkmark
ran_gen	-0.599 8387832	2.64900σ	\checkmark	-0.818207 0661	0.54667σ	\checkmark
Random	-0.599 9298634	1.15224σ	\checkmark	-0.818250 8678	1.49512σ	\checkmark
NWS	-0.629 8741065	463.606σ		-0.825 6142629	161.111σ	
SNWS	-0.599 6945214	5.01971σ		-0.817973 4189	4.51291σ	
Expected	-0.600 0000000			-0.8181818181		

A very common situation arises when one has to produce random points uniformly distributed on the surface of an n sphere of radius R. Some general computational techniques for doing this are summarized in Refs. [2,19]. We can then use

$$
\begin{equation*}
\left\langle\vec{r}_{12} \cdot \vec{r}_{23}\right\rangle_{n}=-R^{2}, \tag{14}
\end{equation*}
$$

to examine the quality of such transformed random number generators as discussed in Ref. [29].

Another application of the GRIP formalism is in stochastic geometry. We can design a test scheme for a configuration utilizing any number of random points [29], and these tests can be included in the GRIP family. Among the tests are the following.
(1) Four uniform random points configuration for an n ball of radius R,

$$
\begin{align*}
\left\langle\left(\vec{r}_{12} \cdot \vec{r}_{23}\right)\left(\vec{r}_{34} \cdot \vec{r}_{41}\right)\right\rangle_{n} & =\frac{n(n+1)}{(n+2)^{2}} R^{4}, \tag{15}\\
\left\langle\left(\vec{r}_{12} \cdot \vec{r}_{34}\right)\left(\vec{r}_{23} \cdot \vec{r}_{41}\right)\right\rangle_{n} & =\frac{2 n}{(n+2)^{2}} R^{4}, \tag{16}\\
\left\langle\vec{r}_{13} \cdot \vec{r}_{24}\right\rangle_{n} & =0 . \tag{17}
\end{align*}
$$

(2) $2 m$ uniform random points configuration for an n ball of radius R,

$$
\begin{gather*}
\left\langle\left(\vec{r}_{12} \cdot \vec{r}_{23}\right) \cdots\left(\vec{r}_{2 m-12 m} \cdot \vec{r}_{2 m 1}\right)\right\rangle_{n} \\
=(-1)^{m} \frac{n\left(n^{m-1}+1\right)}{(n+2)^{m}} R^{2 m}, \tag{18}
\end{gather*}
$$

where $2 m$ ($m=2,3,4$, etc.) is a positive even number.
A derivation of Eq. (15) can be found in the Appendix. Equations (16)-(18) can be derived in a similar manner.

V. RESULTS

We summarize the computational results using Eq. (3) when $n=3$ and 9 in Table I. The results obtained from Eq. (18) when $m=2,3,4$ and $n=3$ and 9 are presented in Tables II, III, and IV. Note that in Tables I-IV, RNG denotes the specific random number generator defined in the text, "Error" is measured in terms of how many standard derivations $\sigma[8-12]$ the result differs from the theoretical number in absolute value, and the check marks ($\sqrt{ }$) designate those RNG's where the errors are less than 3σ. We consider those RNG's whose errors are larger than 3σ unacceptable, as they may contain subtle n-dimensional nonrandom patterns hidden in random number sequences produced by those RNG's.

TABLE II. Computed results for $\left\langle\left(\vec{r}_{12} \cdot \vec{r}_{23}\right)\left(\vec{r}_{34} \cdot \vec{r}_{41}\right)\right\rangle_{n}$, where "Expected" is the exact result obtained from Eq. (24). For each entry in the table, $N=10^{6}$ was used. The results have been rounded off to 10 significant digits. See text for additional details.

RNG	$n=3$	Error	Rating	$n=9$	Error	Rating
LCG1	0.4803262207	0.38729σ	\checkmark	0.7451608586	1.82074σ	\checkmark
LCG2	0.4793125805	0.81684σ	\checkmark	0.7471423419	4.47138σ	
LCG3	0.4798002973	0.23710σ	\checkmark	0.7460970247	3.07191σ	
F55a	0.4794722791	0.62583σ	\checkmark	0.7450446863	1.66400σ	\checkmark
F55b	0.4802511129	0.29780σ	\checkmark	0.7460280971	2.98178σ	\checkmark
F100	0.4793333655	0.79406σ	\checkmark	0.7471734254	4.51577σ	
F378	0.4792400774	0.90314σ	\checkmark	0.7479463604	5.53490σ	
F23209	0.4788916962	1.31638σ	\checkmark	0.7458527381	2.74513σ	\checkmark
R31	0.4816743986	1.98036σ	\checkmark	0.7437512131	0.06789σ	\checkmark
R250	0.4792461682	0.89487σ	\checkmark	0.7459346361	2.85605σ	\checkmark
R9689	0.4804802365	0.56857σ	\checkmark	0.7464499208	3.54730σ	
R44497	0.4805857528	0.69443σ	\checkmark	0.7450352788	1.65054σ	\checkmark
R132049	0.4791108317	1.05649σ	\checkmark	0.7466298475	3.78132σ	
PENTA31	0.4797095433	0.34451σ	\checkmark	0.7471643832	4.48989σ	
PENTA89	0.4789512829	1.24614σ	\checkmark	0.7462519120	3.27910σ	
Ziff31	0.4799776264	0.02652σ	\checkmark	0.7451600157	1.82056σ	\checkmark
Ziff89	0.4806089583	0.72163σ	\checkmark	0.7455409875	2.33093σ	\checkmark
Ziff9689	0.4802531051	0.30062σ	\checkmark	0.7459342387	2.85333σ	\checkmark
durxor	0.4798363568	0.19433σ	\checkmark	0.7461124647	3.09483σ	
durand	0.4799635544	0.04317σ	\checkmark	0.7468271028	4.05046σ	
ran_gen	0.4797373236	0.31143σ	\checkmark	0.7465575424	3.68475σ	
Random	0.4823012440	2.72522σ	\checkmark	0.7448450910	1.40049σ	\checkmark
NWS	0.5650918749	86.8004σ		0.7293596234	19.5459σ	
SNWS	0.4786335901	1.62413σ	\checkmark	0.7461139251	3.09980σ	
Expected	0.4800000000			0.7438016528		

Hence caution should be exercised when these generators are put into use.

We observe that NWS and Weyl (results not shown) perform poorly in $n=3$ and 9 on all GRIP tests, and hence these are not recommended for any serious Monte Carlo simulation. We also note from the $n=9$ results in Table II that these results are clearly biased to larger values (except R31 and NWS) compared to the expected value, and reveal much larger errors than the other cases. One interpretation may be that $\left\langle\left(\vec{r}_{12} \cdot \vec{r}_{23}\right)\left(\vec{r}_{34} \cdot \vec{r}_{41}\right)\right\rangle_{9}$ is a more sensitive and dedicated computational test for investigating random number generators than other GRIP tests. For RNG's such as LCG1, F23209, R250, R44497, Ziff31, Ziff89, Ziff9689, and Random whose errors are less than 3σ in all the GRIP tests, we quantify these RNG's as high quality, although additional tests for different geometric configurations in other dimensions should be further investigated.

Reference [29] contains additional results for random number generators based on modern algorithms such as the data encryption standard (DES) $[2,3]$, and on turbulent electroconvection [30], along with the computed results from Eqs. (13) and (14), and results from other geometric objects such as an n cube.

VI. GRIP ANALYSIS

In the following, we analyze the relationship between GRIP and a random number sequence, and show how a good
random number sequence, when converted to random points in a space defined by a geometric object, can produce a series of known n-dimensional geometric constants. A random number sequence generated from a random number generator can be written as

$$
\begin{equation*}
a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} a_{8} a_{9} a_{10} \ldots \tag{19}
\end{equation*}
$$

where each number a_{1}, a_{2}, \ldots has been computed to 16 significant digits in the present work. When the sequence is converted to represent random points in a two-dimensional geometric object, the random numbers in Eq. (19) can then be grouped in pairs as

$$
\begin{equation*}
\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right)\left(a_{5} a_{6}\right)\left(a_{7} a_{8}\right)\left(a_{9} a_{10}\right) \ldots \tag{20}
\end{equation*}
$$

where Cartesian coordinates are used. The first set of random points $\left\{\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right\}$ can thus be identified as

$$
\begin{equation*}
\vec{r}_{1}=\left(a_{1}, a_{2}\right), \quad \vec{r}_{2}=\left(a_{3}, a_{4}\right), \quad \vec{r}_{3}=\left(a_{5}, a_{6}\right) \tag{21}
\end{equation*}
$$

GRIP then uses \vec{r}_{1}, \vec{r}_{2}, and \vec{r}_{3} to evaluate the average scalar product, which can be computed by rewriting

TABLE III. Computed results for $\left\langle\left(\vec{r}_{12} \cdot \vec{r}_{23}\right)\left(\vec{r}_{34} \cdot \vec{r}_{45}\right)\left(\vec{r}_{56} \cdot \vec{r}_{61}\right)\right\rangle_{n}$, where "Expected" is the exact result obtained from Eq. (24). For each entry in the table, $N=10^{6}$ was used. The results have been rounded off to 10 significant digits. See text for additional details.

RNG	$n=3$	Error	Rating	$n=9$	Error	Rating
LCG1	-0.240 0475388	0.06410σ	\checkmark	-0.555 8723085	1.93763σ	\checkmark
LCG2	-0.240 1688871	0.22627σ	\checkmark	-0.555 5992398	1.55591σ	\checkmark
LCG3	-0.2398318023	0.22516σ	\checkmark	-0.5563866859	2.63984σ	1
F55a	-0.2402813218	0.37700σ	\checkmark	-0.554 2156398	0.35281σ	1
F55b	-0.240681 2565	0.90816σ	\checkmark	-0.555 1890143	0.99287σ	\checkmark
F100	-0.239 6145178	0.51725σ	\checkmark	-0.555 7254311	1.73039σ	\checkmark
F378	-0.241330520 1	1.77206σ	\checkmark	-0.555 5050339	1.42599σ	\checkmark
F23209	-0.239 0498686	1.28062σ	\checkmark	-0.554 8121463	0.47186σ	\checkmark
R31	-0.240589 8126	0.78523σ	\checkmark	-0.552 6068286	2.59612σ	\checkmark
R250	-0.239 6617837	0.45397σ	\checkmark	-0.554 9654236	0.68392σ	\checkmark
R9689	-0.239 2879022	0.95750σ	\checkmark	-0.555 0242783	0.76382σ	\checkmark
R44497	-0.239 1871024	1.09028σ	\checkmark	-0.554 2330513	0.32730σ	\checkmark
R132049	-0.239 1273367	1.17125σ	\checkmark	-0.555 3298935	1.18620σ	\checkmark
PENTA31	-0.240 1044074	0.13988σ	\checkmark	-0.556 1160769	2.26738σ	\checkmark
PENTA89	-0.2405160748	0.68886σ	\checkmark	-0.555 1309197	0.91090σ	\checkmark
Ziff31	-0.239 1233759	1.17676σ	\checkmark	-0.555 8298286	1.86798σ	\checkmark
Ziff89	-0.239 4245986	0.77000σ	\checkmark	-0.555 4911031	1.41120σ	\checkmark
Ziff9689	-0.239 2166823	1.04965σ	\checkmark	-0.554 3716876	0.13627σ	\checkmark
durxor	-0.2393365685	0.88983σ	\checkmark	-0.554 8759683	0.55897σ	\checkmark
durand	-0.239 6767746	0.43155σ	\checkmark	-0.555 5941431	1.54743σ	\checkmark
ran_gen	-0.239 8936006	0.14276σ	\checkmark	-0.555 5140822	1.43941σ	\checkmark
Random	-0.242 0623991	2.74386σ	\checkmark	-0.555 3263645	1.18388σ	\checkmark
NWS	-0.306122 2749	73.1801σ		-0.543 0013386	16.2303σ	
SNWS	-0.239 9666407	0.04487σ	\checkmark	-0.555 8723085	1.93763σ	\checkmark
Expected	-0.240000 0000			-0.554 4703230		

$$
\begin{align*}
\left\langle\vec{r}_{12} \cdot \vec{r}_{23}\right\rangle= & \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{2}\left(a_{6 i-4+j}-a_{6 i-6+j}\right) \\
& \times\left(a_{6 i-2+j}-a_{6 i-4+j}\right), \tag{22}
\end{align*}
$$

where N is a large positive integer. When the geometric object is a circle of radius R and uniform density, we expect $\left\langle\vec{r}_{12} \cdot \vec{r}_{23}\right\rangle \approx-0.5 R^{2}$ as predicted by Eq. (1).

The analysis for two-dimensional GRIP can be immediately generalized to the n-dimensional case. When the sequence in Eq. (19) is used to generate random points in an n-dimensional spherical object, we can regroup Eq. (19) as follows:

$$
\begin{equation*}
\left(a_{1} \cdots a_{n}\right)\left(a_{n+1} \cdots a_{2 n}\right)\left(a_{2 n+1} \cdots a_{3 n}\right)(\cdots)(\cdots)(\cdots) \ldots \tag{23}
\end{equation*}
$$

The average scalar product of $\vec{r}_{12} \cdot \vec{r}_{23}$ can then be expressed as

$$
\begin{align*}
\left\langle\vec{r}_{12} \cdot \vec{r}_{23}\right\rangle= & \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{n}\left(a_{3 i n-2 n+j}-a_{3 i n-3 n+j}\right) \\
& \times\left(a_{3 i n-n+j}-a_{3 i n-2 n+j}\right) \tag{24}
\end{align*}
$$

When the geometric object is an n ball with a radius $R=1$ and a uniform density, we expect from Eq. (1) that the result of Eq. (24) should be a geometric constant, $-n /(n+2)$.

VII. CONCLUSIONS

We have presented a computational paradigm, GRIP, for evaluating the quality of random number generators in multiple (n-dimensional) levels. We then demonstrate that GRIP gives rise to a geometric property characterizing truly random number generators. We have shown how a random number sequence, when converted to random points in a space defined by a geometric object, can produce a series of known geometric constants. Several random number generators were selected to run our GRIP tests, and they are graded based on the 3σ error criterion. Finally, we note that one implication of our work is that computational scientists should test the random number generators they use in their simulations, and verify that their random number generators pass as many of the proposed tests as possible.

ACKNOWLEDGMENTS

The authors wish to thank R. Ziff for correspondence and for providing references prior publication, T. K. Kuo and Dave Seaman for helpful discussions, and the Purdue Uni-

TABLE IV. Computed results for $\left\langle\left(\vec{r}_{12} \cdot \vec{r}_{23}\right)\left(\vec{r}_{34} \cdot \vec{r}_{45}\right)\left(\vec{r}_{56} \cdot \vec{r}_{67}\right)\left(\vec{r}_{78} \cdot \vec{r}_{81}\right)\right\rangle_{n}$, where "Expected" is the exact result obtained from Eq. (24). For each entry in the table, $N=10^{6}$ was used. See text for additional details.

RNG	$n=3$	Error	Rating	$n=9$	Error	Rating
LCG1	0.13514044836	1.14563σ	\checkmark	0.4484099033	0.45119σ	\checkmark
LCG2	0.13460348025	0.31160σ	\checkmark	0.4479009720	1.14776σ	\checkmark
LCG3	0.13459484274	0.30013σ	\checkmark	0.4501391092	1.90643σ	\checkmark
F55a	0.13479383040	0.60703σ	\checkmark	0.4472990253	1.97972σ	\checkmark
F55b	0.13480955991	0.62657σ	\checkmark	0.4498437297	1.50773σ	\checkmark
F100	0.13526898661	1.34118σ	\checkmark	0.4492375456	0.68210σ	\checkmark
F378	0.13374294867	1.02105σ	\checkmark	0.4490822100	0.46735σ	\checkmark
F23209	0.13364676854	1.17825σ	\checkmark	0.4483616819	0.51580σ	\checkmark
R31	0.13702100835	3.94609σ		0.4463421757	3.31142σ	
R250	0.13412002593	0.43419σ	\checkmark	0.4483926773	0.47485σ	\checkmark
R9689	0.13542142180	1.56498σ	\checkmark	0.4494326509	0.94622σ	\checkmark
R44497	0.13512456849	1.12330σ	\checkmark	0.4479987079	1.01310σ	\checkmark
R132049	0.13420531996	0.30080σ	\checkmark	0.4482785124	0.63130σ	\checkmark
PENTA31	0.13379353303	0.93659σ	\checkmark	0.4493251347	0.80024σ	\checkmark
PENTA89	0.13326876104	1.76752σ	\checkmark	0.4472890460	1.99025σ	\checkmark
Ziff31	0.13530398859	1.39176σ	\checkmark	0.4493243417	0.79657σ	\checkmark
Ziff89	0.13415990960	0.36759σ	\checkmark	0.4495964794	1.16867σ	\checkmark
Ziff9689	0.13312624767	1.99475σ	\checkmark	0.4483185389	0.57655σ	\checkmark
durxor	0.13475584992	0.54729σ	\checkmark	0.4486713851	0.09328σ	\checkmark
durand	0.13519979076	1.24225σ	\checkmark	0.4482558710	0.66290σ	\checkmark
ran_gen	0.13535621759	1.46385σ	\checkmark	0.4479750213	1.04562σ	\checkmark
Random	0.13517100152	1.19057σ	\checkmark	0.4483599306	0.51967σ	\checkmark
NWS	0.19058811906	65.9349σ		0.4348603210	19.6506σ	
SNWS	0.13416961146	0.35408σ	\checkmark	0.4488440431	0.14295σ	\checkmark
Expected	0.13440000000			0.4487398401		

versity Computing Center for computing support. This work was supported in part by the U.S. Department of Energy, Contract No. DE-AC02-76ER1428.

APPENDIX: DERIVATION OF $\left\langle\left(\vec{r}_{12} \cdot \vec{r}_{23}\right)\right\rangle_{n}$ AND $\left\langle\left(\vec{r}_{12} \cdot \vec{r}_{23}\right)\right.$ $\left.\times\left(\vec{r}_{34} \cdot \vec{r}_{41}\right)\right\rangle_{n}$

We derive the analytical result of Eq. (1) for a circle (n $=2$) of radius R and uniform density. The same derivation can be applied to the case of n dimensions where $n \geqslant 3$. We label three independent random points as 1, 2, and 3 in Fig. 1 , and then calculate

$$
\begin{equation*}
\vec{r}_{12} \cdot \vec{r}_{23}=r_{12} r_{23} \cos \theta=-r_{12} r_{23} \cos \alpha, \tag{A1}
\end{equation*}
$$

FIG. 1. Three random points configuration in a circle.
where $\alpha+\theta=\pi$. From the triangle formed by the random points, we then have

$$
\begin{equation*}
r_{31}^{2}=r_{12}^{2}+r_{23}^{2}-2 r_{12} r_{23} \cos \alpha . \tag{A2}
\end{equation*}
$$

Extending this two-dimensional case to the n-dimensional case, and combining Eqs. (A1) and (A2), we then evaluate

$$
\begin{align*}
\left\langle\vec{r}_{12} \cdot \vec{r}_{23}\right\rangle_{n} & =-\frac{1}{2}\left\langle r_{12}^{2}+r_{23}^{2}-r_{31}^{2}\right\rangle_{n}
\end{align*}=-\frac{1}{2}\left\langle r_{12}^{2}\right\rangle_{n}, ~=-\frac{1}{2} \int_{0}^{2 R} P_{n}(r) r^{2} d r=-\frac{n}{n+2} R^{2}, ~ \$
$$

where $r \equiv r_{12}$ and we have utilized the fact that $\vec{r}_{12}, \vec{r}_{23}$, and \vec{r}_{31} are three independent random vectors. The functions $P_{n}(r)$ in Eq. (A3), which can be found in Refs. [19,20,3136], are the probability density functions for the random distance r between two random points in an n-dimensional spherical ball of radius R and uniform density.

We consider next the analytical result in Eq. (15) for a circle ($n=2$) of radius R and uniform density. A similar derivation can lead to Eqs. (16), (17), and (18), as well as to the case of n dimensions where $n \geqslant 3$. We begin by expressing four random points $\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}$, and \vec{r}_{4} in Cartesian coordinates, where $\vec{r}_{i}=\left(x_{i}, y_{i}\right)$. The expression in Eq. (15) can then be evaluated by writing

$$
\begin{equation*}
\left\langle\left(\vec{r}_{12} \cdot \vec{r}_{23}\right)\left(\vec{r}_{34} \cdot \vec{r}_{41}\right)\right\rangle_{2}=\frac{\int_{-R}^{R} d x_{1} \int_{-\sqrt{R^{2}-x_{1}^{2}}}^{\sqrt{R^{2}-x_{1}^{2}}} d y_{1} \cdots \int_{-R}^{R} d x_{4} \int_{-\sqrt{R^{2}-x_{4}^{2}}}^{\sqrt{R^{2}-x_{4}^{2}}} f_{1} \times f_{2} d y_{4}}{\int_{-R}^{R} d x_{1} \int_{-\sqrt{R^{2}-x_{1}^{2}}}^{\sqrt{R^{2}-x_{1}^{2}}} d y_{1} \cdots \int_{-R}^{R} d x_{4} \int_{-\sqrt{R^{2}-x_{4}^{2}}}^{\sqrt{R^{2}-x_{4}^{2}}} d y_{4}}=\frac{3}{8} R^{4}, \tag{A4}
\end{equation*}
$$

where

$$
\begin{aligned}
& f_{1}=\left(x_{2}-x_{1}\right)\left(x_{3}-x_{2}\right)+\left(y_{2}-y_{1}\right)\left(y_{3}-y_{2}\right), \\
& f_{2}=\left(x_{4}-x_{3}\right)\left(x_{1}-x_{4}\right)+\left(y_{4}-y_{3}\right)\left(y_{1}-y_{4}\right) .
\end{aligned}
$$

A derivation of the general result using the probability density functions $P_{n}(r)$ in Eq. (A3) can be found in Ref. [29].
[1] J. Dongarra and F. Sullivan, Comput. Sci. Eng. 2, 22 (2000).
[2] D. E. Knuth, The Art of Computer Programming, 3rd ed. (Addison-Wesley, Reading, MA, 1998), Vol. 2.
[3] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in $C, 2$ nd ed. (Cambridge University Press, New York, 1992).
[4] G. Marsaglia, in Computer Science and Statistics: Proceedings of the 16th Symposium on the Interface, edited by L. Billard (Elsevier, Amsterdam, 1985), pp. 3-10.
[5] A. Garcia, Numerical Methods for Physics, 2nd ed. (PrenticeHall, Upper Saddle River, NJ, 2000).
[6] N. Giordano, Computational Physics (Prentice-Hall, Upper Saddle River, NJ, 1997).
[7] J. Gentle, Random Number Generation and Monte Carlo Methods, 2nd ed. (Springer-Verlag, New York, 1998).
[8] A. M. Ferrenberg, D. P. Landau, and Y. J. Wong, Phys. Rev. Lett. 69, 3382 (1992).
[9] I. Vattulainen, T. Ala-Nissila, and K. Kankaala, Phys. Rev. Lett. 73, 2513 (1994).
[10] I. Vattulainen, K. Kankaala, J. Saarinen, and T. Ala-Nissila, Comput. Phys. Commun. 86, 209 (1995).
[11] I. Vattulainen, T. Ala-Nissila, and K. Kankaala, Phys. Rev. E 52, 3205 (1995).
[12] I. Vattulainen and T. Ala-Nissila, Comput. Phys. 9, 500 (1995).
[13] A. N. Kolmogorov and V. A. Uspenskii, Theor. Probab. Appl. 32, 389 (1987).
[14] A. N. Kolmogorov, Theor. Comput. Sci. 207, 387 (1998).
[15] G. Chaitin, Algorithmic Information Theory (Cambridge University Press, New York, 1987).
[16] G. Chaitin, Information, Randomness and Incompleteness: Papers on Algorithmic Information Theory, 2nd ed. (World Sci-
entific, Teaneck, NJ, 1990).
[17] G. Chaitin, Exploring Randomness (Springer, New York, 2001).
[18] S. M. Pincus, Proc. Natl. Acad. Sci. U.S.A. 88, 2297 (1991).
[19] S. J. Tu, Ph.D. thesis, Purdue University, West Lafayette, IN, 2001.
[20] S. J. Tu and E. Fischbach, J. Phys. A 35, 6557 (2002).
[21] G. Fishman, Math. Comput. 54, 331 (1990).
[22] R. Ziff, Phys. Rev. Lett. 69, 2670 (1992).
[23] R. Ziff, Comput. Phys. 12, 385 (1998).
[24] http://www.ibm.com.
[25] http://www.vni.com.
[26] M. Metcalf and J. Reid, Fortran 90/95 Explained, 2nd ed. (Oxford, Midsomer Norton, Avon, 1999).
[27] B. L. Holian, O. E. Percus, T. T. Warnock, and P. A. Whitlock, Phys. Rev. E 50, 1607 (1994).
[28] K. V. Tretiakov and K. W. Wojciechowski, Phys. Rev. E 60, 7626 (1999).
[29] S. J. Tu and E. Fischbach (unpublished).
[30] J. Gleeson, Appl. Phys. Lett. 81, 1949 (2002).
[31] M. G. Kendall and P. A. P. Moran, Geometrical Probability (Hafner, New York, 1963).
[32] L. A. Santaló, Integral Geometry and Geometric Probability (Addison-Wesley, Reading, MA, 1976).
[33] H. Solomon, Geometrical Probability (SIAM, Philadelphia, 1978).
[34] R. V. Ambartzumian, Factorization Calculus and Geometric Probability (Cambridge University Press, New York, 1990).
[35] D. Klain and G. C. Rota, Introduction to Geometrical Probability (Cambridge University Press, New York, 1997).
[36] E. Fischbach, Ann. Phys. (N.Y.) 247, 213 (1996).

[^0]: *Electronic address: sjtu@physics.purdue.edu
 ${ }^{\dagger}$ Electronic address: ephraim@physics.purdue.edu

